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Evaluation of Fourier Transform of Two-Center Charge
Distribution for Arbitrary Slater-Type Orbitals
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Fourier transform of two-center charge distributions corresponding to arbitrary
Slater-type orbitals are evaluated by a Gaussian quadrature procedure without
any preliminary series expansion of the integrand. Convergence and accuracy of
the method are discussed and illustrated.
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1. Introduction

Matrix elements of the form {y,|exp (ig-r)|x;> involving a set of given basis func-
tions {x} are important ingredients for quantum-mechanical calculations of
dynamical effects of atoms and molecules.

Elastic and inelastic cross sections for collisions of fast electrons with molecular
targets [1] and form factors for coherent X-ray diffraction from atoms or molecules
[2-4] are only two examples where the above cited matrix elements play a role.

In addition to this clear reason of importance, which stems directly from the
inspection of the analytic expressions for the relevant cross sections, we point out
that the availability of the matrix <y|exp (ig-r)|x)> may offer a way for generalizing
to high orders our knowledge of the first multipole moments associated with an
arbitrary molecular charge distribution. In fact, if we take into account that any
moment of the charge distribution can be generated starting from the identity

[(Vg--- Vo) exp (ig-r)lg=o = (D)"(r-- - r), 0y
n-times n-times
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and some efficient interpolation scheme can be devised so as to provide the explicit

g-dependence of the matrix {x|exp (ig-¥)|x), then from Eq. (1) we derive the desired
multipole moment.

Standard choices for the basis {x} consist of Gaussian- or Slater-type orbitals,
centered at the various nuclei of the molecule of interest. In both cases, approaches
have been suggested for the evaluation of the matrix element {y,|exp (ig-r)|xs>,
usually referred to as Fourier transform of the distribution y¥y, [5]. By this short
paper we propose to extend the list of contributions already available for the case
where {y(} is a set of Slater-type orbitals, surely the more complicated one. Our pro-
cedure follows very closely that put forward by Bonham et al. [6, 7] for the simplest
two-center distribution, i.e. 15,155, the Fourier transform of any other distribution
being then generated from the simplest one by differentiation with respect to proper
parameters. Even if the emphasis of the present paper is on the computational con-
venience of such an approach with respect to others possible, we shall briefly dwell
on the formal part (Sect. 2), devoting the last section to a presentation and dis-
cussion of typical results.

2. Mathematical Apparatus

Let us consider the general expression for Fourier transform of a product of Slater-
type orbitals (STQ’s),

Tesa) = [ XE) exp Garxs(ry) d, @
where x,(r,) and y(rg) are STO’s centered at A and B respectively and the r vector
appearing in exp (ig-r) is referred to an arbitrary origin 0. Since exp (ig+r) can

trivially be translated from the point O to the center A or B, we shall limit our atten-
tion to the following integrals,

Tesa) = [ x202) exp Gig-radys(rs) d. ®

Considering, for the moment, s-type STO’s only, and making use of the integral
representation [6]

rgtexp (—{'ra) = (1/2172)(—3/6?)”'] dk exp (ik-re)[(k* + ). “
Equation (3) can be cast into the form
Loy wss(@) = [QOP"*H2LYY 2 /(2m)! (2n)1]H2(1 [4m)(1/27%)
(= 2fery [ r exp (= tra + igery) dry

x f dk exp (ik-r)/(k* + ). 0



Fourier Transform of Two-Center Charge Distribution 167

After translation of the factor exp (ik-rg) from the center B to A, the integral in
Eq. (5) can be rewritten as

f dk exp (—ik-R)(k? + ) j dryri=texp [—Ura + i(g + K)-ra]
(R =ry — ra)

The integration in r, can readily be carried out:
fdrArX'l exp [—{ra + i(g + K)-rs]l = 4a(—0/00" [1/( + |g + k)]

moreover, from the Feynman identity (ab) ! = J'; dola + (b — a)«] 2 and the sub-
stitution kK = p — «g, we may transform the expression in Eq. (5) as follows:

Lnsy wsa(@) = [Q2OP7 320> *1(2m)t Q)1 FH2(1 27 %) (= 1)+
(@ jepar™) [ doexp Gog B [ dp exp (~ipPlF* + MEP
0 (©)
where M(a) = {'? + ({* — ['Da + ¢%«(l — «).
In Eq. (6) the p-integration can be performed which leads to the final result
Loy wsa(P) = (122D QLYY *12m)! 2 )2(— 1)+ (n ™ [eLrol'™)
x f dec exp (iag - R — RIM(@)]“2)/[M (). 0
All integrals involving s-type STO’s can therefore be obtained by carrying out in
Eq. (7) the appropriate number of differentiations with respect to  or {’. Explicit

formulae are easily obtainable for each case, even though at the expense of some-
what long and tedious work.

Passing to the case of orbitals associated with higher spherical harmonics, the
relevant formulae can be derived from Eq. (7) by differentiation with respect to
appropriate parameters, as we shall see in a moment.

If a local coordinate framework is assumed, whose z-axis lies along the R vector, all
integrals involving STO’s with / = 1,2,... are obtained in a fairly simple way.
For instance, an integral containing a np, orbital centered at A becomes

Lip anss(@) = [BRO>*120)*™ +1/(2m)! (2n')1]*2(1/4m)
f FR72E " Yxs exp (—Lrp + igers — Urp) dr
[3O" 1 Q2LY™ 1 [(2n)! 2n )21 [Am)(1/i)

(2/4,) f FEE L exp (= lra + igora — U'rg) dr

= 20312120 ~ DI*(E/24,) [ xa-11072) XD (-rxrs) i,
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which involves a simple differentiation with respect to the component g,. If the
orbital with / = 1,2, ... is centered at B, it is sufficient to consider that, in the
chosen local reference system, Xy = Xa, Vs = Va, Zs = Z4 — R for obtaining
formulae for any type of integrals. It should not be surprising that the expressions
for integrals involving STO’s associated with higher principal and azimuthal quan-
tum numbers become rapidly complicated; for instance, the matrix element
(2p.,lexp (ig-rp)|3d,,,> involves eight contributions:

2pzylexp (igera)3d.,.> = — 43V 2182
X {—Zqz f: de] — @)°aFy(cl)
+ GRIGE + ¢} = 208) | dell = P a'F@)
~@aE + a3 = 2 | el = e
+ iR® f: do(l — @)a?F(a) — R,

x | de(l — a)*e?Fy(e) —2iR

x | da(l — a)3e?Fy(a) + 2R%g,

X

Y

A

—_
I

a)?a®Fy(a) + 2iRq}

x | do(l — u)4a3F3(a)}
where we have put
Fy(@) = (2/m) exp (ioq- R)R®+3/[RY M ()] **
* {[(#/2)/(RY M(@)* K+ 13+ 12l RV M (@)},

[(7/2)/(RY M (@))]*2K s 4 1+ 1/2[ RV M ()] being a modified spherical Bessel function
of the third kind [8].

Integrals with increasing values of # and / involve higher and higher numbers of
contributions: for instance, integrals of the form {5d.2|{exp (ig+¥)|5d,2» require 56
contributions. In any case, the integrals to be evaluated by numerical quadrature
are of the following general form:

T =f0 do(l — &) o F(c). (3)

3. Results

The problem we are faced with is the evaluation of the integral appearing in Eq. (8).
Unfortunately we are unable to calculate it in a closed analytic form even for the
simplest case [y;,1,,, and recourse to numerical quadrature is needed (eventually
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preceded by suitable manipulations of the integrand [5] in order to make it as
smooth as possible). As far as we are concerned, we have found convenient a
straightforward quadrature based on the form of Eq. (8), by simply choosing a
proper subdivision of the integration range in sub-intervals along with an optimal
integration point grid. Thus, if within the sub-interval (g;, ;) we put e,(¢) =
(a; + b)/2 + (b; — a;)t/2, then Eq. (8) becomes

TEr =3 by = a2 il - OV OFee)

= 3> A > (1 = ay(t) eyt Fulos(t) Ho, (9)
i s

where A; = b, — a; and {H,} is the required set of Gauss quadrature weights [9].

A preliminary manipulation of the integrand along the lines suggested in Ref. [5]
so as to get rid of troubles arising from its oscillatory nature in our experience did
not prove to be practically convenient for STO’s of arbitrary principal quantum
numbers. In fact, an annoying feature of our attempts founded on the Lommel
series expansion of the integrand [5] was that a considerably increasing number of
terms had to be introduced in order to obtain a satisfying convergence.

On the other hand, the procedure based on the direct numerical quadrature, Eq.
(9), requires that both the number of sub-intervals and integration grid are prefixed
so as to come in any case to a reasonable compromise between accuracy and econ-
omy, a goal attained only on empirical grounds.

Table 1. Matrix elements of the type {1s|exp (ig-ra)|1s5)> evaluated either by direct quadrature
or by Monkhorst et al. procedure: a comparison (8 = cos™* [¢- R/|q|R])

{a=12,=57 R=20aau.

Our procedure Ref. [5]
Re (D) Im (1) Re (I) Im (D)
lgl =40 6=00 0.285215(—1) —0.114950(—-1) 0.28521(—1) —0.11495(-1)
g = 5.0 8 =mx/4 0.200005(—1) 0.106220(—1) 0.20001(—1) 0.10622(—1)
gl =60 8==/4 —0.513332(—2) 0.150802(—1) —0.51335(—2) 0.15080(—1)
gl =70 8==/4 —0.110622(—1) —0.197652(—2) —0.11062(—1) —0.19764(—2)
lgq] = 8.0 6 = =/4 0.244479(—-3) —0.800233(—2) 0.24453(—-3) —0.80026(—2)
lgt =9.0 0 =na/4 0.574536(—2) —0.653660(—3) 0.57454(—-2) —0.65364(~3)
g} = 10.0 6 = 7/4 0.107503(—2) 0.410165(—2) 0.10750(—2) 0.41016(~2)
R=15au, 0 =00,]¢ =4.0au.
Our procedure Ref. [5]
Re () Im (D) Re () Im (1)

lh=12 {a=12 0627941(=2) —0.895108(—3) 0.627861(—2) —0.894995(—3)
{a=12 {3=05 0543222(~2) —0.341204(—2) 0.542674(—2) —0.347684(—2)
la=12 =20 0.124710(—1) 0.124633(~1)  0.124689(— 1) 0.124620(— 1)
{a=05 {s=05 0.137431(-2) —0.195903(=3) 0.137279(=2) —0.195687(—3)
{a=05 I3=20 0142290(—1) ~—0.104122(—1) 0.142124(~1) —0.103950(—1)
A=20 Ip=20 0.721025(—4) 0.102780(—4)  0.720884(—4) 0.102760( — 4)
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In Table 1 we report some typical values for integrals of the type f drlsa(rs) exp

(iq-r)1si(rg), corresponding to a given pair of orbital exponents { and different
¢’s (first part of the table) or a fixed ¢ and different pairs of { values. The real part
Re (1) and the imaginary part Im () of the various integrals evaluated by our pro-
cedure are compared with those obtained by the Monkhorst ef al. procedure [5]:
in particular, the entries listed under the heading *‘Ref. [5]”* in the first part of the
table are easily deduced starting from Table 1 of Ref. [5]. The remarkable agree-
ment between the two approaches needs no comment; as an element of critical
assessment, however, we emphasize that in our experience the computational time
is definitely favourable to the direct numerical quadrature procedure, with respect
to the Monkhorst ef al. procedure, as proved by the average computational time
per integral which passes from ~0.22 sec to ~0.11 sec (on IBM 370/158).

As pointed out in Ref. [5], in many cases (depending on the values of the orbital
exponents {,, {s, internuclear separation R and g vector), the value of the integrals
g Eq. (9), is severely controlled by the contributions arising from the first and/or
the last sub-interval. The convergence of the integration procedure has therefore
been probed by varying in a suitable way either the width A of such sub-intervals or
the number N of integration points there used. Since most matrix elements consist
of several integrals 7 ", and these converge for different values of N and/or A, it is
convenient to use proper N and A values for each .7 #" in order to minimize the
computational time.

The matrix elements reported in Table 2 display some peculiar features arising
from the chosen quantum numbers #, /, orbital exponent { and |g|. (&, A,) denotes
respectively the overall integration point number and the width adopted for the
first or last sub-interval, as long as a single choice is sufficient; (N’, A}) has an
entirely analogous meaning when more slowly convergent integrals 7 " occur. The
inspection of Table 2 shows how a satisfying convergence is assured in most cases
by a relatively acceptable point number.

In Table 3 we present matrix elements I, ;, m,:npinms(g) cOrresponding to limit values
of R and |gq|, so as they reduce to known or easily evaluated quantities. As R — 0,
the above matrix elements approach the corresponding one-center ones, which are
easily expressed in simple analytical form. On the other hand, as {g| — 0, lim 4., X
Lnatamainsinms(@) — Snatamainsizmgs the overlap integral between the same pair of
STO’s. The clearly conformal behaviour of the reported quantities is a further
element of confidence in the numerical procedure suggested in this paper.
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